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SUMMARY

How do individuals decide to act based on a
rewarding status quo versus an unexplored choice
that might yield a better outcome? Recent evidence
suggests that individuals may strategically explore
as a function of the relative uncertainty about the
expected value of options. However, the neural
mechanisms supporting uncertainty-driven explo-
ration remain underspecified. The present fMRI
study scanned a reinforcement learning task in
which participants stop a rotating clock hand in
order to win points. Reward schedules were such
that expected value could increase, decrease, or
remain constant with respect to time. We fit several
mathematical models to subject behavior to
generate trial-by-trial estimates of exploration as
a function of relative uncertainty. These estimates
were used to analyze our fMRI data. Results indi-
cate that rostrolateral prefrontal cortex tracks
trial-by-trial changes in relative uncertainty, and
this pattern distinguished individuals who rely on
relative uncertainty for their exploratory decisions
versus those who do not.

INTRODUCTION

Learning to make choices in a complex world is a difficult

problem. The uncertainty attending such decisions requires a

trade-off between two contradictory courses of action: (1) to

choose from among known options those that are believed to

yield the best outcomes, or (2) to explore new, unknown alterna-

tives in hope of an even better result (e.g., when at your favorite

restaurant, do you try the chef’s new special or your ‘‘usual’’

choice?). This well-known exploration-exploitation dilemma

(Sutton and Barto, 1998) deeply complicates decision making,

with optimal solutions for even simple environments often being

unknown or computationally intractable (Cohen et al., 2007).

Abundant evidence now supports striatal dopaminergic mecha-

nisms in learning to exploit (see Doll and Frank, 2009; Maia,

2009 for review). By contrast, considerably less is known about

the neural mechanisms driving exploration (Aston-Jones and

Cohen, 2005; Daw et al., 2006; Frank et al., 2009).
In the reinforcement learning literature, exploration is often

modeled using stochastic choice rules. Such rules permit agents

to exploit the best known actions for reward while also discov-

ering better actions over time by periodically choosing at random

or by increasing stochasticity of choice when options have

similar expected values (Sutton and Barto, 1998). A more effi-

cient strategy is to direct exploratory choices to those actions

about which one is most uncertain (Dayan and Sejnowski,

1996; Gittins and Jones, 1974). Put another way, the drive to

explore may vary in proportion to the differential uncertainty

about the outcomes from alternative courses of action. Thus,

from this perspective, the brain should track changes in relative

uncertainty among options, at least in those individuals who rely

on this strategy for exploratory choices.

Neurons in prefrontal cortex (PFC) may track relative uncer-

tainty during decision making. Using fMRI, Daw et al., (2006)

observed activation in rostrolateral prefrontal cortex (RLPFC;

approximately Brodmann area [BA] 10/46) during a ‘‘multi-

armed bandit task’’ when participants selected slot machines

that did not have the highest expected value. Daw et al. tested

whether participants guide exploration toward uncertain

options, but did not find evidence for an ‘‘uncertainty bonus.’’

However, the reward contingencies were not stationary, and

participants overestimated the rate of change, effectively

only including the last trial’s reward in their expected value

estimations (i.e., they had a learning rate near 1.0). Thus, while

the dynamic contingencies strongly induced uncertainty about

the value of unexplored options, this manipulation may have

paradoxically precluded the identification of an uncertainty

bonus, because participants believed that only the previous

trial was relevant.

Frank et al. (2009) recently showed evidence that quantitative

trial-by-trial exploratory responses are in part driven by relative

uncertainty when reinforcement contingencies are stationary

over time. Moreover, substantial individual differences in uncer-

tainty-driven exploration were observed, a large part of which

were accounted for by a polymorphism in the catechol-O-methyl

transferase (COMT) gene that affects PFC dopamine levels. A

subsequent study with the same task found that uncertainty-

driven exploration was substantially reduced in patients with

schizophrenia as a function of anhedonia, also thought to be

related to PFC dysfunction (Strauss et al., 2011). These findings

provide a general link between relative uncertainty-based explo-

ration and PFC function. Frank et al. (2009) further hypothesized

that RLPFC, in particular, may track relative uncertainty among

options.
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Figure 1. Behavioral Task with Plots of Reward

Function Conditions

(A) On each trial, participants stopped a rotating clock

hand to win points.

(B) The probability of reward as a function of RT for each

expected value condition: increasing (IEV), decreasing

(DEV), constant (CEV), and constant-reversed (CEVR).

(C) The magnitude of reward as a function of RT across EV

conditions.

(D) The expected value as a function of RT for condition.
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Despite the failure to observe uncertainty-basedmodulation of

RLPFC activity in previous gambling tasks, the hypothesis that

RLPFC computes relative uncertainty is consistent with the

broader human neuroimaging literature. Activation in RLPFC is

greater during computations of uncertainty during goal attain-

ment in navigation (Yoshida and Ishii, 2006) and has been shown

to track relative reward probabilities for alternative courses of

action (Boorman et al., 2009). More broadly, growing evidence

suggests that RLPFC is at the apex of a caudal to rostral hierar-

chical organization in frontal cortex (Badre, 2008; Koechlin et al.,

2003; Koechlin and Summerfield, 2007). In this organization,

more rostral PFC regions exert control over action at more

abstract levels. One conception of abstraction is that which

involves tracking higher-order relations (Braver and Bongiolatti,

2002; Bunge andWendelken, 2009; Bunge et al., 2005; Christoff

et al., 2001; Kroger et al., 2002; Koechlin et al., 1999).

In this respect, Bunge and Wendelken (2009) interpreted the

Boorman et al. (2009) result as indicative of a more fundamental

computation of the RLPFC in tracking the relative advantage of

switching to alternative courses of action, rather than of reward

probabilities, per se. In keeping with this suggestion, we hypoth-

esized that, while in environments in which participants explore

based on relative uncertainty, activation in RLPFC would

track changes in relative uncertainty. We further posited that

individual differences in uncertainty-driven exploration might

be accompanied by differences in the RLPFC response to rela-

tive uncertainty.

In order to test our hypotheses, we scanned participants in

fMRI while they performed a temporal utility integration task

(Frank et al., 2009; Moustafa et al., 2008). In this task, partici-

pants observe a clock hand make a clockwise rotation about a

clock face over a 5 s interval (Figure 1A). Participants press a

button on a keypad to stop the rotation and win points. The

probability and magnitude of rewards varied as a function of
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response time (RT), such that the expected

value increased, decreased, or stayed constant

for different levels of RT (Figures 1C and 1D). For

a given function, participants can learn the

optimal style of responding (e.g., fast or slow)

to maximize their reward.

RESULTS

Computational Model
Individual subject performance on the task was

fit using a previously developed mathematical
model (Frank et al., 2009) that allows trial-by-trial estimates of

several key components of exploratory and exploitative choices.

In this model, different mechanisms advance these contradic-

tory drives in an attempt to maximize total reward. In what

follows, we will discuss the key components of the model rele-

vant to the current fMRI study (full model details are discussed

in the Supplemental Experimental Procedures, available online).

We also conducted a number of simulations using simplified and

alternative models in order to assess robustness of the effect of

relative uncertainty in RLPFC and its sensitivity to the specific

model instantiation. These alternate models are described fully

further below and in the Supplemental Information, though we

will briefly refer to them here.

Both exploitation of the RTs producing the highest rewards

and exploration for even better rewards are driven by errors of

prediction in tracking expected reward value V. Specifically,

the expected reward value on trial t is:

VðtÞ=Vðt � 1Þ+adðt � 1Þ (1)

where a is the rate at which new outcomes are integrated into

the evaluation V and d is the reward prediction error [RPE; Re-

ward(t � 1) – V(t � 1)] conveyed by midbrain dopamine neurons

(Montague et al., 1996).

A strategic exploitation component tracks the reward struc-

ture associated with distinct response classes (categorized as

‘‘fast’’ or ‘‘slow,’’ respectively). This component is intended to

capture how participants track the reward structure for alterna-

tive actions, allowing them to continuously adjust RTs in propor-

tion to their relative value differences. The motivation for this

modeling choice was that participants were told at the outset

that sometimes it will be better to respond faster and sometimes

slower. Given that the reward functions are monotonic, all the

learner needs to do is track the relative values of fast and slow



Figure 2. Illustration of Changes in Beta Distributions over the

Course of Learning across Different Task Conditions

The x axis plots the probability that a particular action will yield a positive

reward prediction error (RPE). Each curve plots the level of belief (y axis) that

a participant has about each probability for a given course of action, which in

this task are operationalized as responding faster (green curves) or slower (red

curves). The peak of each curve represents the subject’s strongest belief

about the value of a particular option. Exploitative responses move in the

direction of the highest perceived value. Hence, under IEV conditions (left plot)

slower responses are more likely to yield a positive RPE, whereas in DEV

conditions (right plot) faster responses have higher value. The standard devi-

ation of the distribution reflects the participant’s uncertainty regarding the

value of that option. Thus, early in learning (dashed line) the width is larger (and

uncertainty greater) than later in learning (solid line). The difference in the

standard deviations of these fast and slow distributions at any given trial is

relative uncertainty.
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responses and proportionately adjust RTs toward larger value.

More specifically, the model assumes that participants track

the probability of obtaining a better than average outcome

(a positive RPE) following faster or slower responses, which

are separately computed via Bayesian integration:

Pðqjd1.dnÞfPðd1.dnjqÞPðqÞ (2)

where q represents the parameters of the probability distribution,

and d1. dn are the prediction errors observed thus far (on trials 1

to n). Frank et al. (2009) previously reported that the behavioral

data were best fit with the simplifying assumption that subjects

track the probability of positive RPEs, which can be accom-

plished by ‘‘counting phasic dopamine bursts,’’ rather than the

specific expected reward values of the different responses. As

such, q consists of beta distributed, Beta(h,b), estimates of posi-

tive prediction errors expected for fast and slow responses (Fig-

ure 2). Parameters from alternative models in which expected

reward magnitude is tracked are strongly correlated with those

from this model that tracks the probability of RPE. But model

fits are superior for the RPE model, which also yields uncertainty

estimates that are potentially more suitable for fMRI (see Supple-

mental Information).

Given the learned expected values, the difference of their

means (mslow, mfast) contributes to response latency on trial t

scaled by free parameter r:

r½mslowðtÞ � mfastðtÞ� (3)

It is important to clarify that though the reward statistics are

tracked for different categorical actions (i.e., in terms of ‘‘fast’’
versus ‘‘slow’’), the predicted RTs are continuous as a function

of these statistics. More specifically, RTs are predicted to contin-

uously adjust in proportion to the difference in mean reward

statistics, in that a larger difference in values for fast and slow

leads to larger changes in RT.

Finally, the exploratory component of the model capitalizes on

the uncertainty of the probability distributions to strategically

explore those responses for which reward statistics are most

uncertain. Specifically, the model assumes that subjects explore

uncertain responses to reduce this uncertainty. This component

is computed as:

ExploreðtÞ= ε½sslowðtÞ � sfastðtÞ�; (4)

where sslow and sfast are the uncertainties, quantified in terms of

standard deviations of the probability distributions tracked by

the Bayesian update rule (Figure 2), and ε is a free parameter

controlling the degree to which subjects make exploratory

responses in proportion to relative uncertainty.

In the primary model, we constrained ε to be greater than

0 to estimate the degree to which relative uncertainty guides

exploration, and to prevent the model fits from leveraging this

parameter to account for variance related to perseveration

during exploitation. However, we also report a series of alternate

models for which ε is unconstrained (i.e., it is also allowed to go

negative to reflect ‘‘ambiguity aversion’’; Payzan-LeNestour and

Bossaerts, 2011).

These exploit and explore mechanisms, together with other

components, afford quantitative fits of RT adjustments in this

task, and the combined model is identical to that determined

to provide the best fit in prior work. However, to ensure that rela-

tive uncertainty results do not depend on the use of this partic-

ular model, we also report results from several alternate models

that are more transparently related to those used in the tradi-

tional reinforcement learning literature. In these models, we treat

fast and slow responses categorically (as in a two-armed bandit

task) and predict their probability of occurrence with a standard

softmax choice function, with parameters optimized by

maximum likelihood (as opposed to the standard model, which

minimizes squared error between predicted and actual RT). We

consider models in which reward structure of these categorical

responses is acquired via either Bayesian integration or rein-

forcement learning (Q-learning).

To summarize, then, model fits provide subject-specific, trial-

by-trial estimates of reward prediction error (d+, d�), the mean

expected values about the likelihood of a positive prediction

error for fast and slow responses (mslow, mfast), and the uncer-

tainties about these estimates (sslow, sfast). The model also

provides estimates of individual participant’s reliance on relative

uncertainty to explore (ε). We used these estimates to analyze

our fMRI data and provide an explicit test of the hypothesis

that RLPFC tracks relative uncertainty to strategically guide

exploration (see Supplemental Analysis and Figure S1 for the

analysis of reward prediction error).

Behavioral Results and Model Performance
Across conditions (Figure 1), participants reliably adjusted

RTs in the direction indicative of learning (Figure 3A). During

the second half of each learning block, RTs in the decreasing
Neuron 73, 595–607, February 9, 2012 ª2012 Elsevier Inc. 597
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Figure 3. Plots of Behavioral Results and Model Fits to Individual Participant Behavior

(A) Average RT across participants demonstrates that incremental adjustments in RT were consistent with learning.

(B) Average of individual subject model fits captured incremental adjustments in RT across learning conditions.

(C) A plot from one representative participant illustrates that changes in the Explore term (blue) partially captures trial-to-trial swings in RT (green).

(D) Correlation between RT swings and relative uncertainty among explorers (left) and nonexplorers. All trials in all participants are plotted in aggregate with color

distinguishing individuals. The correlation between RT swings and relative uncertainty was significantly different from zero in explorers (mean r = 0.36, p < 0.0001),

but not in nonexplorers (mean r = �0.02, p > 0.5).
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expected value (DEV) condition were significantly faster than

in constant expected value [CEV; F(1,14) = 13.95, p < 0.005].

Likewise, RTs in the increasing expected value (IEV) condi-

tion were significantly slower than in CEV [F(1,14) = 5.6,

p < 0.05] during the second half of each learning block. Within

each condition, participants reliably sped up from the first to

second half of trials in DEV [F(1,14) = 8.2, p < 0.05] and slowed

down in IEV [F(1,14) = 5.1, p < 0.05]. There were no reli-

able differences in RT from first to second half of trials in

CEV or constant expected value-reversed conditions (CEVR;

p values > 0.5).
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These incremental RT adaptations over the course of learning

were well captured by the mathematical model (Figure 3B). As in

prior studies, these adaptations were observed in the average

learning curve within and across individuals. In contrast, trial-

by-trial changes in RT were not incremental but were character-

ized by large ‘‘RT swings’’ (Frank et al., 2009). The model

captured some of the variance in these swings by assuming

that they reflect exploratory RT adjustments in the direction of

greater uncertainty about the reward statistics (Figure 3C).

Across subjects, the r-values reflecting the correlation between

the direction of RT swing from one trial to the next and the
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model’s estimate of relative uncertainty were reliably greater

than zero (t = 3.9; p < 0.05). The improvement in model fit by

including the uncertainty-driven exploration component

(and penalizing for the added model complexity; see Supple-

mental Experimental Procedures) was correlated with the esti-

mated ε parameter (r = 0.68, p = 0.005; this result held even

when allowing ε to reach negative values; see below). Thus, indi-

vidual differences in uncertainty-driven exploration were

captured both by improvement in model fit and by the estimated

ε parameter. Indeed, out of 15 participants, eight had ε parame-

ters greater than 0 (hereafter, ‘‘explorers’’). This fitted positive ε

parameter captured the tendency for explorers’ RT swings to

adjust in the direction of greater uncertainty. Indeed, the correla-

tion between RT swings and relative uncertainty was significantly

different from zero in explorers (mean r = 0.36, p < 0.0001),

but not in nonexplorers (mean r = �0.02, p > 0.5; Figure 3D).

To further test whether the fitted ε parameter largely accounts

for RT swings (rather than some overall tendency to direct RTs

toward more or less certain actions), we constructed another

model in which we explicitly modeled changes in RT (RT(t) –

RT(t � 1)) rather than overall RT, with ε unconstrained (i.e., ε

could be positive or negative). In this analysis, the fitted ε corre-

lated with that from the standard model (Spearman rho = 0.55,

p = 0.03) and was significantly greater than zero (p < 0.0001).

Notably, the improvement in model fit by including ε (as as-

sessed by Aikake’s Information Criterion; AIC) was strongly

correlatedwith the fitted ε value, such that individuals fit by larger

(more positive) ε values were characterized by greater improve-

ments in fit (r = 0.88, p < 0.0001). Comparing the original

explorers versus nonexplorers, improvement in model fit to RT

swings was significantly greater in explorers (mean DAIC = 26,

nonexplorers mean DAIC = 13; t(13) = �2.2, p = 0.046). Other

alternative models, in which ε was unconstrained, fit to overall

RT (reported below in conjunction with fMRI analysis; Table

S1) led to similar results, showing that including the uncer-

tainty-driven exploration term yielded robustly better fits to the

data in explorers but not nonexplorers.

Thus, having identified individual differences in exploration

based on participants’ behavior, we sought to determine the

neural correlates of relative uncertainty and whether these differ

between explorers and nonexplorers.

Relative Uncertainty and Right Rostrolateral PFC
In the model, the standard deviations of the beta distributions for

each response provide trial-by-trial estimates of uncertainty

about the likelihood of obtaining a better outcome than average

for each response option. Relative uncertainty—the difference in

standard deviation of the beta distributions for slow and fast

responses (jsslow � sfastj)—is hypothesized to drive exploratory

responding (Figure 4A).

We initially assessed relative uncertainty as a parametric func-

tion associated with stimulus onset (Figure 4A). This analysis

yielded activation in RLPFC (XYZ = 36 56 �8; p < 0.001 [FWE

cluster corrected]), alongwith awide network of other neocortical

regions (see Table S2), in association with relative uncertainty.

Importantly, based on prior work (e.g., Frank et al., 2009), indi-

vidual participantsmay rely to different degrees on relative uncer-

tainty tomake exploratory responses. Consistent with this obser-
vation, when the whole-brain voxel-wise analysis of relative

uncertainty was restricted to the ‘‘explorer’’ participants (ε > 0),

reliable activation was evident in right RLPFC both in a ventral

RLPFC cluster (XYZ = 40 60 �10; 30 52 �14; p < 0.001 [FWE

cluster level]) and in a more dorsal RLPFC cluster (XYZ = 24 48

20; 30 52 16; 18 40 22; p < 0.001 [FWE cluster level]), along with

a set of occipital and parietal regions (see Table S2). By contrast,

the analysis of relative uncertainty in the nonexplore group (ε = 0)

did not locate reliable activation in right RLPFC. This group differ-

ence in RLPFCwas confirmed in a direct group contrast, locating

reliably greater activation for explore thannonexploreparticipants

in dorsal RLPFC (XYZ = 24 46 20; p < 0.005 [FWE cluster level]).

It is conceivable that effects of relative uncertainty in RLPFC

are confounded by shared variance due to mean uncertainty.

There are a number of ways that relative and mean uncertainty

might share variance. For example, both mean and relative

uncertainty can decline monotonically during the course of

a block (i.e., to the extent that the participant samples reward

outcomes from both fast and slow responses). Thus, to estimate

relative uncertainty independent of its shared variance with

mean uncertainty, we conducted a second whole-brain analysis

in which the parametric regressor for mean uncertainty (see

below) was entered prior to that for relative uncertainty, and

therefore any relative uncertainty effects are over and above

the effects of mean uncertainty (this model was used for all

subsequent relative uncertainty analyses). From this analysis,

the voxel-wise analysis of the unique effects of relative uncer-

tainty in ‘‘explorer’’ participants (ε > 0) again yielded reliable

activation in right RLPFC (Figure 4B) in ventral (XYZ = 30

52 �14; 36 56 �10; p < 0.001 [FWE cluster level]) and dorsal

RLPFC (XYZ = 22 56 26; 26 52 16; 44 42 28; p < 0.001 [FWE

cluster level]; Table S2). Changes in relative uncertainty in

explore subjects also correlated with activation in the superior

parietal lobule (SPL; �8 �62 66; �16 �70 62; �24 �68 68;

p < 0.001 [FWE cluster level]). The nonexplore group (ε = 0) did

not locate reliable activation in right RLPFC, and again, uncer-

tainty-related activation was greater for explore than nonexplore

participants in dorsal RLPFC (XYZ = 22 54 28; 28 48 14; 22 46 20;

p < 0.005 [FWE cluster level]; Figure 4C). A follow up demon-

strated these effects even when analysis was restricted to only

the first half of trials within a block, thereby ruling out confounds

related to fatigue or other factors that could affect responding

once learning has occurred (see Supplemental Information).

ROI analysis, using an RLPFC ROI defined from a neutral task

effects contrast in the full group (XYZ = 27 50 28; Figure 5C),

confirmed the results of the whole brain analysis. Specifically,

the effect of relative uncertainty in right RLPFC was reliable for

the explore participants [t(7) = 4.5, p < 0.005] but not the nonex-

plore participants [t(6) = 1.2], and the direct comparison between

groups was significant [t(13) > 4.4, p < 0.005]. Further ROI anal-

ysis also demonstrated these effects using ROIs in RLPFC

defined based on coordinates from prior studies of exploration

(i.e., Daw et al., 2006 and Boorman et al., 2009; see Supple-

mental Information).

Relative Uncertainty in Alternative Models
The primary model of learning and decision making in this task

was drawn directly from prior work (Frank et al., 2009) to permit
Neuron 73, 595–607, February 9, 2012 ª2012 Elsevier Inc. 599
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Figure 4. Whole-Brain Analysis of Trial-to-Trial Changes in Relative Uncertainty

(A) Example individual subject relative uncertainty regressor from one run of one participant. Convolution of parametric changes in relative uncertainty (jsslow(t)�
sfast(t)j) on each trial (top plot) with a canonical hemodynamic response function (middle plot) produced individual participant relative uncertainty regressors

(bottom plot).

(B) The effect of relative uncertainty, controlling for mean uncertainty and restricted to explore participants (ε > 0), revealed activation in dorsal and ventral RLPFC

regions (rendered at p < 0.05 FWE corrected [cluster level]).

(C) Contrast of relative uncertainty effect, controlling for mean uncertainty, in explore (ε > 0) versus nonexplore (ε = 0) participants revealed a group difference in

RLPFC (rendered at p < 0.05 FWE corrected [cluster level]).
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consistency and comparability between studies. However, we

next sought to establish that the effects of relative uncertainty

observed in RLPFC were not wholly dependent on specific

choices made in constructing the computational model itself.

Thus, we constructed three alternative models that relied on

the same relative uncertainty computation as the primary model

but differed in other details of their implementation that may

affect which specific subjects are identified as explorers (see

Supplemental Information for modeling details).

First, we eased the constraint that ε be greater than or equal to

0. In the primary model, we added this constraint so that model

fits could not leverage this parameter to account for variance

related to perseveration, particularly on exploit trials. However,

in certain task contexts some individuals may consistently avoid

uncertain choices (i.e., uncertainty aversion; Payzan-LeNestour

and Bossaerts, 2011; Strauss et al., 2011). It follows, then, that

these individuals might track uncertainty in order to avoid it,

perhaps reflected by a negative ε parameter. Alternatively, ε

may attain negative values if participants simply exploit on the
600 Neuron 73, 595–607, February 9, 2012 ª2012 Elsevier Inc.
majority of trials, such that the exploitative option is selected

most often and hence has the most certain reward statistics

(assuming that value-based exploitation is not perfectly

captured by the model). Thus a negative ε need not necessarily

imply uncertainty aversion, and it could be that the smaller

proportion of exploratory trials is still guided toward uncertainty.

Thus, we conducted three simulations in which ε was uncon-

strained (see also earlier model of RT swings).

In an initial simulation, we categorized responses as explor-

atory or not, where exploration is defined by selecting responses

with lower expected value (Sutton and Barto, 1998; Daw et al.,

2006). While we fit the remaining model parameters across all

trials, we fixed ε = 0 on all exploitation trials and allowed it to

vary only in trials defined as exploratory. The goal of this proce-

dure was to determine whether exploratory trials were more

often driven toward the most uncertain option and to prevent

the fitting procedure from penalizing the model fit in all of the

exploitation trials in which the more certain action is generally

selected.
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Figure 5. Whole-Brain and ROI Analysis of Mean and Relative Uncertainty

(A) Example individual subject mean uncertainty regressor from one run of one participant. Convolution of parametric changes in mean uncertainty ([sslow(t) +

sfast(t)]/2) on each trial (top plot) with a canonical hemodynamic response function (middle plot) produced individual participant mean uncertainty regressors

(bottom plot).

(B) Mean uncertainty in the whole group, controlling for relative uncertainty, yielded activation in a large neocortical network including right DLPFC (rendered at

p < 0.05 FWE corrected [cluster level]).

(C) ROI analysis based on extracted beta estimates of relative uncertainty confirmed a group difference in relative uncertainty within RLPFC and showed a greater

effect of relative uncertainty in RLPFC than DLPFC in explorers (*p < 0.05).

(D) ROI analysis based on extracted beta estimates of mean uncertainty found no differences in mean uncertainty between groups.

All error bars indicate the standard error of the mean.
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In this analysis, seven participants (including six of the

explorers identified by the primary model) were best fit with posi-

tive ε, and the remaining eight were fit with negative ε. Analysis of

relative uncertainty in the explore subjects identified from this

model yielded reliable effects in ventral RLPFC (XYZ = 30

56 �12; p < 0.05 [FWE cluster level]) and IPS (XYZ = 36 �46

56; p < 0.005 [FWE cluster level]). Participants with negative ε

from this model did not yield positive or negative correlations

of relative uncertainty with activation in RLPFC.

Another reason ε could attain negative values is due to partic-

ipants’ tendencies to repeatedly select the same option as

previous trials (independent from their values; Lau and Glimcher,

2005; Schönberg et al., 2007), where again this repeated option

would have greater certainty. To factor out this perseveration or

‘‘sticky choice’’ component, we not only allowed the immediately

preceding trial’s RT to influence the current trial, but also allowed

multiple previous trials to do so with exponential decay. This

analysis allowed ε to be estimated as positive or negative across

all trials. Here, six of the original eight explorers were best fit with

positive ε, and the remaining participants had negative ε.
This model with unconstrained ε and sticky choice provided

a reliably better fit than the model without either sticky choice

or uncertainty, even penalizing for the additional model

complexity (improvement in DAIC = 31.0 [9.2]), or compared to

a model that does include sticky choice but no uncertainty

(DAIC = 3.3 [1.8]). Furthermore, as in the RT swing model, the

fitted ε parameter value correlated with this improvement in fit

(r = 0.51, p = 0.05; and r = 0.53, p = 0.04 for the two model

comparisons), suggesting that more positive uncertainty-driven

exploration parameters are contributing to better fits rather

than the negative ones. Analysis of the fMRI data restricted to

the six subjects estimated to be explorers by this model still

yielded reliable relative uncertainty effects in dorsal RLPFC

(XYZ = 26 52 16; p < 0.001 [FWE cluster level]) along with SPL

(XYZ = �6 �60 60; p < 0.001 [FWE cluster level]; Table S2).

Participants estimated to have a negative ε again did not show

positive or negative correlations of relative uncertainty with

activation in RLPFC.

Finally, we constructed a model that fit categorical rather than

continuous RT distributions. As already noted, a feature of the
Neuron 73, 595–607, February 9, 2012 ª2012 Elsevier Inc. 601
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primary model is that it predicts continuous RT distributions

consistent with the continuous nature of RT in this task.

However, reward statistics are tracked based on two modes of

responding, fast or slow. So, in a final set of simulations, we

matched the response choice function to reward learning and

only attempted to predict categorical action selection between

fast and slow responses as if it were a two-armed bandit task,

rather than predicting a continuous RT distribution (maximizing

the likelihood of fast or slow responses). The core of this model

is a softmax logistic function, which only included the following:

a parameter that estimates any overall bias to respond fast or

slow, an (unconstrained) ε parameter for uncertainty bonus,

a softmax gain parameter, and an estimate of the value of the

two actions. The latter was simulated either as the mean of the

beta distribution or a Q-value learned via reinforcement learning

(RL) with an estimated learning rate. This categorical model iden-

tified a group of eight explore participants (ε > 0) that largely

overlapped with the primary model (two of 15 participants

differed in assignment). Notably, the relative uncertainty effect

in the eight explore participants from this categorical model

yielded activation in dorsal RLPFC (XYZ = 24 50 18; 34 52 16;

44 42 28; p < 0.001 [FWE cluster level]), ventral RLPFC (XYZ =

36 56 �10; p < 0.005 [FWE cluster level]), and SPL (XYZ =

�8�64 66; p < 0.001 [FWE cluster level]; Table S2). Again, there

were no positive or negative correlations with relative uncertainty

in RLPFC in the participants with negative ε.

Thus, the effects of relative uncertainty in RLPFC were robust

to these variations of the model. Moreover, in these models

without a positive ε constraint, we did not find evidence that

RLPFC tracks relative uncertainty in support of uncertainty aver-

sion (i.e., participants with negative ε). However, this leaves open

how to interpret negative epsilon in the nonexplore participants.

As noted above, one possibility is that participants tend to

repeatedly select the same option independent from their values.

When controlling for sticky choice in the categorical model, the

majority of participants were best characterized by positive ε

(11 or 13 out of 15 participants for beta or Q-learning variants,

respectively). A likelihood ratio test confirmed that including an

uncertainty exploration bonus provided a significantly better fit

(and including penalization of extra parameters) across the

group of explorers (defined from those in the standard model;

p < 0.00001), but only marginally so in nonexplorers (p = 0.053;

the test was significant across the whole group, p < 0.00001).

In the Q version, the likelihood ratio test was again significant

in the explorers, p = 0.00002, but not in the nonexplorers (p =

0.15; thus the slightly positive ε values did not contribute to

model fit). This test was again significant across the entire group

(p = 0.00005). As in prior models, the fitted ε parameter corre-

lated with improvement in likelihood relative to a model without

uncertainty driven exploration (r = 0.71, p = 0.003). Thus in these

simplified models predicting categorical choice, only explorers

showed a robust improvement in fit by incorporating relative

uncertainty into the model, and a fit of negative epsilon seems

largely explained by the tendency to perseverate independently

of value. This result also implies that the earlier findings are not

solely due to a directional change in RT due to uncertainty

(e.g., from a slow response to a slightly faster but still slow

response), but are sufficient to induce a categorical shift.
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Mean Uncertainty and Right DLPFC
Relative uncertainty comparisons may require separately main-

taining and updating working memory with the reward statistics

for each option (including their variance). In light of the putative

rostro-caudal organization of frontal cortex (Badre, 2008), we

hypothesized that uncertainty about each option might be main-

tained by DLPFC regions caudal to RLPFC that do not neces-

sarily track changes in relative uncertainty.

Results from the analysis of mean uncertainty were broadly

consistent with this hypothesis. As a metric of the overall level

of uncertainty associated with all options in the task, we

computed a mean uncertainty regressor as the trial-by-trial

average ofsslow andsfast (Figure 5A). Aswith relative uncertainty,

we tested mean uncertainty in a model that entered relative

uncertainty first, thereby permitting estimation of the effects of

mean uncertainty over and above that sharedwith relative uncer-

tainty. Mean uncertainty was associated with a widely distrib-

uted fronto-parietal network (Figure 5B) that included right

DLPFC (XYZ = 38 30 34; 30 26 20; 46 14 28; p < 0.001 [FWE

cluster level]). In addition, this whole-brain voxel-wise contrast

revealed activation p < 0.001 [FWE cluster level] in regions of

supplementary motor area (XYZ = 8 12 62), right dorsal premotor

cortex (XYZ = 56 16 38), and a large bilateral cluster encompass-

ing occipital and posterior parietal cortex. ROI analysis using

neutrally defined ROIs in both right DLPFC (XYZ = 40 30 34)

and the right RLPFC confirmed the effects of the whole-brain

analysis, locating significant effects of mean uncertainty in

both regions [DLPFC: t(14) = 5.6, p < 0.0001; RLPFC: t(14) =

3.1, p < 0.01; Figure 5D].

Unlike relative uncertainty, the effect of mean uncertainty did

not differ as a function of individual differences in exploration

(explore versus nonexplore). Rather, ROI analysis confirmed

that there were no group differences in mean uncertainty in

DLPFC (t = 0.5) or in RLPFC (t = 0.14). Unlike relative uncer-

tainty—which was greater in RLPFC than DLPFC (t = 2.1, p <

0.05) in the explorers and not in the nonexplorers [t = 1.9; Group

x Region: F(1,13) = 9.2, p < 0.01; Figure 5C]—mean uncertainty

did not differ reliably between groups or regions (Figure 5D). This

result suggests that the distinguishing trait of explore partici-

pants depends on computing the relative difference in uncer-

tainties between options (supported by RLPFC more than

DLPFC), an indicator of the potential value of information gained

by exploring, rather than simply representing uncertainty or

reward statistics.

DISCUSSION

When deciding among different actions, we are often faced

with tension between exploiting options that have previously

yielded good outcomes and exploring new options that might

be even better. One means of strategic exploration is to choose

new options in proportion to their degree of uncertainty relative

to the status quo. This strategy requires tracking not only the

expected values of candidate options, but also the relative

uncertainties about them. In the present study, we used

subject-specific, trial-by-trial estimates of relative uncertainty

derived from a computational model to show that RLPFC tracks

relative uncertainty in those individuals who rely on this metric
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to explore. This result was robust across multiple variants of the

model’s structure.

In models of reinforcement learning, the predominant

approach to exploration is to stochastically sample choices

that do not have the highest expected value (e.g., Boltzmann

‘‘softmax’’ choice function; Sutton and Barto, 1998). This

stochasticity is flexible: it increases when expected values of

available options are similar, thereby increasing exploration.

Moreover, the degree of stochasticity (the temperature of the

softmax function) is thought to be under dynamic neuromodula-

tory control by cortical norepinephrine, perhaps as a function of

reinforcement history (Cohen et al., 2007; Frank et al., 2007). On

the other hand, such regulatory mechanisms are only moder-

ately strategic in that by effectively increasing noise, they are

insensitive to the amount of information that could be gained

by exploring one alternative action over another (indeed,

a stochastic choice mechanism is equally likely to sample the

exploited option). Amore strategic approach is to direct explora-

tion toward those options having the most uncertain rein-

forcement contingencies relative to the exploited option, so

exploration optimizes the information gained.

Whether the brain supports such directed, uncertainty-driven

exploration has been understudied. Though prior fMRI studies

have associated RLPFC with exploratory decision making

(Daw et al., 2006), these data were suggestive of a more

stochastic (undirected) approach to exploration, with no

evidence for an uncertainty bonus. However, as already noted,

this may have been due to participants’ belief that contingencies

were rapidly changing. In contrast, when contingencies were

stationary within blocks of trials, Frank et al. (2009) reported

evidence for an influence of uncertainty on exploratory response

adjustments, and that individual differences in uncertainty-

driven exploration were predicted by genetic variants affecting

PFC function. However, though consistent with our hypothesis,

these data did not demonstrate that the PFC tracks relative

uncertainty during exploratory decisions. The present results

fill this important gap and show that quantitative trial-by-trial esti-

mates of relative uncertainty are correlated with signal change in

RLPFC.

Individual Differences in Relative Uncertainty
Notably, the relative uncertainty effect in RLPFCwas strongest in

those participants who were estimated to rely on relative uncer-

tainty to drive exploration. This group difference was evident

despite the fact that changes in relative uncertainty in each

participant were independent of the model’s estimate of that

participant’s ε. This finding suggests not only that RLPFC must

track relative uncertainty for it to have an influence on behavior,

but also that this signal is not tracked obligatorily by the brain in

all individuals. Thus, a key question raised by the present result is

why RLPFC apparently tracks relative uncertainty in some indi-

viduals and not others?

One possibility is that this difference reflects strategy, whether

implicit or explicit. Some individuals may have previously

acquired the strategy that computing relative uncertainty is

adaptive for information gain in similar types of decision-making

situations. Thus, these individuals tend to track relative uncer-

tainty and so RLPFC is recruited for this function. However,
from this perspective, nothing precludes ‘‘nonexplorers’’ from

tracking relative uncertainty in RLPFC were they to also employ

this strategy. Indeed, there was no indication that these partici-

pants were less likely to track themean uncertainty in the DLPFC

or RLPFC, putatively reflecting the computation of reward statis-

tics. Hence, strategy training may be sufficient to induce them to

consider the relative differences between the actions, as well.

Alternatively, a more basic difference in PFC function or

capacity might underlie the individual differences in RLPFC rela-

tive uncertainty effects. For example, prior work has shown that

nonexplorers were found to be more likely to carry val alleles of

a COMT gene polymorphism, which is associated with reduced

prefrontal dopamine function (Frank et al., 2009). As the partici-

pants with low ε parameters in the present study were those who

did not track relative uncertainty in RLPFC, this raises the

intriguing possibility that the present findings reflect a phenotypic

difference related to prefrontal catecholamine function. We

verified that when fitting the models described here with uncon-

strained ε to the 2009 genetic sample, we replicated the signifi-

cant gene-dose association reported there; notably, the

‘‘val/val’’ subjects were categorized as nonexplorers (on average

negative ε) whereas the ‘‘met/met’’ subjects continued to have

positive ε, with their RT swings correlated with relative uncer-

tainty. The breakdown of val/val and met/met individuals in the

population is roughly evenly distributed, as were the explorers

and nonexplorers reported here. However, genetic data were

not collected in the current sample, and so future genetic

imaging experiments with larger samples than those used here

will be required to resolve this question.

Importantly, the failure to locate a relative uncertainty effect in

the nonexplore group (ε = 0) should not be taken as conclusive

evidence that relative uncertainty is only tracked in those

participants who explore. For example, it is possible that the

assumptions of our model were better suited to capture behav-

ioral strategies of the explorers and that nonexplorers track other

metrics of relative uncertainty. However, model fits in Frank et al.

(2009) showed that nonexplorers were better captured by

a ‘‘reverse-momentum’’model in which individuals progressively

adjust RTs in one direction and then reverse, as though indis-

criminately sweeping the response options rather than guiding

exploration based on uncertainty.

Another possibility is that nonexplorers are sensitive to uncer-

tainty but are actually averse to it, as is typical in behavioral

economic studies (e.g., ambiguity aversion; Ellsberg, 1961).

Indeed, even explorers may be averse to uncertainty but explore

in order to reduce this uncertainty in the long run (i.e., they are

more averse to the uncertainty of the value of their policy than

to that of their local response). In several model variants in which

ε was allowed to attain negative values, it did so primarily in the

nonexplorers, but remained positive in the explorers. Neverthe-

less, small changes in the make-up of explorer versus non-

explorer groups did not change the conclusions about RLPFC.

Indeed, whereas positive ε was consistently associated with

relative uncertainty effects in RLPFC across the models, nega-

tive ε was not. Thus, though negative ε parameters in non-

explorer participants could in principle relate to ambiguity

aversion, we did not find evidence that these participants track

relative uncertainty to avoid it.
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Another possibility is that negative ε reflects the tendency to

make the same choice repeatedly regardless of reward statistics

(i.e., ‘‘sticky choice’’/perseveration; Lau and Glimcher, 2005;

Schönberg et al., 2007). Perhaps consistent with this alternative

in the present task, when controlling for sticky choice, model fits

did not improve by inclusion of ε in the nonexplorers, whereas fits

did improve, and ε was reliably positive, in the explorers across

models. (See Supplemental Information for further discussion of

relative uncertainty compared with other forms of uncertainty).

Functional Anatomy of Uncertainty-Based Exploration
The general association of RLPFC with computations of relative

uncertainty is consistent with the broader literature concerning

the general function of this region. RLPFC has been widely

associated with higher cognitive function (Gilbert et al., 2006;

Ramnani and Owen, 2004; Tsujimoto et al., 2011; Wallis,

2010), including tasks requiring computations of higher-order

relations (Bunge and Wendelken, 2009; Christoff et al., 2001;

Kroger et al., 2002; Koechlin et al., 1999). These tasks require

a comparison to be made between the results of other subgoal

processes or internally maintained representations, such as in

analogical reasoning (Bunge et al., 2005; Krawczyk et al.,

2011; Speed, 2010), higher-order perceptual relations (Christoff

et al., 2003), or same-different recognition memory decisions

(Han et al., 2009).

The present task extends this general relational function to

include comparisons between the widths of probability distribu-

tions built on the basis of prediction error coding. This speaks,

first, to the domain generality and abstractness of the putative

relational representations coded in RLPFC (Bunge and Wen-

delken, 2009). Second, by way of extending previous studies

reporting main effect changes in RLPFC activation under condi-

tions requiring more relational processing, the present experi-

ment demonstrates that the relational effect in RLPFC may

vary parametrically with the magnitude of the relation being

computed.

A question left open by this and prior work is the exact nature

of the neural coding in RLPFC. In the present experiment, we

used the absolute value of the difference in relative uncertainty.

Thus, though the parametric effect indicates that the degree of

relative uncertainty is encoded in RLPFC neurons, it does not

indicate whether this neural representation encodes the link

between uncertainty and specific actions. One possibility is

that relative uncertainty is coded as an absolute difference signal

computed over representationsmaintained elsewhere. From this

perspective, a large difference in uncertainty—regardless of

sign—is a signal to explore. Thus, relative uncertainty acts as

a contextual signal independently of what specific choice consti-

tutes exploration at a givenmoment. In terms of where the action

choice is made, relative uncertainty signals from RLPFC might

provide a contextual signal to neurons in other regions, perhaps

in caudal frontal, striatal, and/or parietal cortex, that bias selec-

tion of an option in favor of that with the larger uncertainty rather

than the anticipated outcome or other factors. This more

abstract conception of relative uncertainty may fit more readily

with a broader view of RLPFC function in which it generally

computes relations among internally maintained contextual

representations of which uncertainty is only one type.
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However, even if the sign of the relative uncertainty is built into

the RLPFC representation, it is not necessarily the case that it

must be reflected directly in peak BOLD response, as in acti-

vating when it is positive and deactivating when it is negative.

Positive and negative signs could be coded by different popula-

tions of active neurons (e.g., reflecting the degree to which

uncertainty is greater for either fast or slow responses), both of

which would result in an increase in synaptic metabolic activity

and so a concomitant BOLD increase regardless of the specific

sign being coded. Thus, demonstrating that RLPFC tracks the

absolute value of the relative uncertainty signal does not rule

out the possibility that the sign of the choice is nevertheless

coded in RLPFC. Future work, such as using pattern classifica-

tion, would be required to determine whether information about

the uncertain choice is encoded in RLPFC.

It should be noted that though the effects of relative uncer-

tainty were highly consistent in terms of their locus across

a number of controls and models tested here, two separate

subregions of RLPFCwere implicated across contrasts. A dorsal

RLPFC focus consistently tracked relative uncertainty in the

explore participants and in the difference between the explore

and nonexplore participants. A ventral focus was evident in the

explore participants and also across the entire group but did

not differ reliably between groups. The more ventral focus is

closer in proximity to both the region of RLPFC associated

with exploration by Daw et al. (2006) and the region associated

with tracking reward value of the unchosen option by Boorman

et al., (2009; though see Supplemental Information for an anal-

ysis of branching and the expected reward of the unchosen

option in the current task). We did not obtain region by effect

interactions and so are not proposing that a functional distinction

exists between these dorsal and ventral subdivisions. Neverthe-

less, activation clusters in these two subregions were clearly

spatially noncontiguous and were reliable under partially over-

lapping contrast conditions. Thus, future work should be careful

regarding the precise locus of effects in RLPFC and their consis-

tency across conditions.

Beyond RLPFC, we also consistently located activation in SPL

in association with relative uncertainty in the explore group.

Although this region was not reliably different between explorers

and nonexplorers, the relative uncertainty effect was found to be

reliable in SPL in explorers across the alternate models tested

here. Previous studies have reported activation parietal cortex

along with RLPFC during tasks requiring exploration (e.g., Daw

et al., 2006). However, the locus of these effects has been in

the intraparietal sulcus (IPS) rather than in SPL. Effects in IPS

were less consistently observed in the current study, and ROI

analysis of IPS defined from previous studies failed to locate reli-

able relative uncertainty effects in this region (see Supplemental

Information). This comes in contrast to the effects in RLPFC,

which are highly convergent in terms of neural locus. The reason

for the variability in parietal cortex cannot be inferred from the

present data set. However, one hypothesis is that it derives

from differences in attentional demands between the different

tasks. For example, SPL has been previously associated with

endogenous, transient shifts of spatial and object-oriented

attention (Yantis et al., 2002; Yantis and Serences, 2003),

perhaps as encouraged by the clock face design, and thus, the
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direct relationship between exploration and identification/atten-

tion to new target locations on the clock. However, such

hypotheses would need to be tested directly in subsequent

experiments.

Relationship to Prior Studies on Exploration
and Uncertainty
Previous studies have not found an effect of uncertainty on

exploration (Daw et al., 2006; Payzan-LeNestour and Bossaerts,

2011). What accounts for the different results between these

studies? Of course, we report substantial individual differences,

such that some participants have positive ε values across

models, and it is only in these participants that RLPFC tracks

relative uncertainty.

Other considerations are worth noting, however. Modeling

exploration is not trivial, because it requires predicting that

participants make a response that counters their general

propensity to exploit the option with highest value, and therefore

any model of exploration requires knowing when this will occur.

Because exploited options are sampled more often, their

outcome uncertainties are generally lower than those of the alter-

native options. Thus, when the subject exploits, they are select-

ing the least uncertain option, making it more difficult to estimate

the positive influence of uncertainty on exploration. As noted

above, this problem is exacerbated by ‘‘sticky choice,’’ whereby

participants’ choices in a given trial are often autocorrelated with

those of previous trials independent of value. Finally, studies

failing to report an effect of uncertainty on exploration have all

used n-armed bandit tasks with dynamic reward contingencies

across trials (Daw et al., 2006; Jepma et al., 2010; Payzan-

LeNestour and Bossaerts, 2011), and participants responded

as if only the very last trial was informative about value (Daw

et al., 2006; Jepma et al., 2010). It may be more difficult to esti-

mate uncertainty-driven exploration in this context, given that

participants would be similarly uncertain about all alternative

options that had not been selected in the most recent trial. In

our behavioral paradigms and model fits, we have attempted

to confront these issues allowing us to estimate uncertainty, its

effects on exploration, and the neural correlates of this

relationship.

First, it is helpful to note the ways that the current paradigm is

atypical in comparison to more traditional n-armed bandit tasks.

Initially, the task was designed not to study exploration, but

rather as ameans of studying incremental learning in Parkinson’s

patients and as a function of dopamine manipulation (Moustafa

et al., 2008). However, in the Frank et al. (2009) large-sample

genetics study, it was observed that trial-by-trial RT swings

appeared to occur strategically and attempts to model these

swings found that they were correlated with relative uncertainty.

Importantly, this is not just a recapitulation of the finding that the

model fits better when relative uncertainty is incorporated (i.e., ε

is nonzero); much of this improvement in fit was accounted for by

directional changes in RT from one trial to the next (RT swings).

This distinction is important: in principle a fitted nonzero ε could

capture an overall tendency to respond to an action that is more

or less certain, e.g., if a subject exploits most of the time, εwould

be negative (assuming the exploitation part of the model is

imperfect in capturing all exploitative choices).
Akin to the points above regarding sticky choice, this may be

one reason that prior studies using bandit tasks have found

negative ε in some subjects, because they attempt to predict

choice on every trial assuming a factor that increases the likeli-

hood of choosing more uncertain actions. But, a tendency to

more often select a particular response would then lead to nega-

tive ε, even if subjects might, in the smaller proportion of explor-

atory trials, be more likely to explore uncertain actions. In

contrast, the RT swing analysis permits examining the degree

to which trial-to-trial variations are accounted for by the explora-

tion term in the model as a function of relative uncertainty and

fitted ε. The use of a continuous RT allows us to detect not

only when RTs change toward the direction of greater uncer-

tainty, but the degree of that change and its correlation with

the degree of relative uncertainty. This analysis is consistent

with our observation that explorers continued to be fit by positive

ε even in the simulations based on categorical responses—

meaning that when sufficiently uncertain they were more likely

to shift qualitatively from a slow to a fast response or vice-versa,

rather than only make small RT adjustments within a response

class.

Second, as noted above, we used a task with static reward

contingencies within a block, but changing contingencies

between blocks, to estimate the effect of uncertainty given the

history of action-outcome samples without the additional

complication of participants’ perceptions and beliefs about

how rapidly contingencies are changing within blocks.

Third, because it is difficult to integrate both frequency and

magnitude for different RTs to compute expected value within

a block, subjects cannot explicitly discover the programmed

expected value functions (and hence behavior is suboptimal).

Combining variation in both frequency and magnitude encour-

ages subjects to sample the space of RTs to determine whether

they might do better.

EXPERIMENTAL PROCEDURES

Participants

Fifteen (eight female) right-handed adults (age 18–27, mean 20) with normal or

corrected-to-normal vision and free of psychiatric and neurological conditions,

contraindications for MRI, and medication affecting the central nervous

system were recruited. Participants gave written informed consent and were

compensated for participation according to guidelines established and

approved by the Research Protections Office of Brown University. Participants

were paid $15/hr for their time.

Logic and Design

In order to investigate explore/exploit decisions, we employed a task used

previously (Frank et al., 2009; Moustafa et al., 2008) to study the influence of

relative uncertainty on exploratory judgments. The task is a variant of the basic

paradigm used to study exploration, in that multiple response options are

available with different expected values that are known with different degrees

of certainty based on previous sampling. The participants attempt to select

responses that maximize their reward. Importantly, however, the present

task separates learning into individual blocks within which the expected values

of the different response options remain constant. As a consequence, partic-

ipants’ uncertainty may be more readily estimated trial-to-trial without esti-

mating their beliefs about how the values are changing.

Participants viewed a clock arm that made a clockwise revolution over 5 s

and were instructed to stop the arm to win points by a button-press response

(Figure 1A). Responses stopped the clock and displayed the number of points
Neuron 73, 595–607, February 9, 2012 ª2012 Elsevier Inc. 605
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won. Payoffs on each trial were determined by response time (RT) and the

reward function of the current condition. The use of RT also provides a mech-

anism to detect exploratory responses in the direction of greater uncertainty,

because they can involve a quantitative change in the direction expected

without requiring participants to completely abandon the exploited option

(e.g., in some trials the exploration component might predict a shift from fast

to slower responses, and participants might indeed slow down but still select

a response that is relatively fast).

As already noted, learning was divided into blocks within which the reward

function was constant. However, the reward functions varied across blocks,

and at the outset of each block participants were instructed that the reward

function could change from the prior block. Across blocks,weused four reward

functions in which the expected value (EV; probability3magnitude) increased

(IEV), decreased (DEV), or remained constant (CEV, CEVR) as RT increased

(Frank et al., 2009; Moustafa et al., 2008) (Figures 1B–1D). Thus, in the IEV

condition, reward is maximized by responding at the end of the clock rotation,

while in DEV early responses produce better outcomes. In CEV, reward prob-

ability decreases and magnitude increases over time, retaining a constant EV

over each trial that is nevertheless sensitive to subject preferences for reward

frequencyandmagnitude.CEVR (i.e., CEVReversed) is identical toCEVexcept

probability and magnitude move in opposite directions over time.

Over the course of the experiment, participants completed two blocks of 50

trials for each reward function, with block order counterbalanced across

participants. While not explicitly informed of the different conditions, the box

around the clock changed its color at the start of each 50 trial run, signifying

to the participant that the expected values had changed. Note that even

though each reward function was repeated once, a different color was used

for each presentation and participants were told at the beginning of a block

that a new reward function was being used.

Within each block, trials were separated by jittered fixation null events

(0–8 s). The duration and order of the null events were determined by opti-

mizing the efficiency of the design matrix so as to permit estimation of

event-related hemodynamic response (Dale, 1999).

There were eight runs and 50 trials within each run. Each run consisted of

only one condition (e.g., CEV) so that participants could learn the reward struc-

ture. Each block was repeated twice during separate runs of the scan session

to eliminate confounds arising from run to run variation (e.g., scanner drift).

Details regarding full computational model, the model fitting, and basic fMRI

procedures and analysis are provided in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental Results, Supplemental Discussion, two tables, and one figure

and can be found with this article online at doi:10.1016/j.neuron.2011.12.025.
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