Small white stalagmites. Insert: one stalagmite cut vertically in half, showing generations of growth with the white one on top. Credit: Courtesy of K. Hackley |
Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone (NMSZ) – and even predict when the next big earthquake may strike, say researchers at the Illinois State Geological Survey and the University of Illinois at Urbana-Champaign.
While the 1811-12, magnitude 8 New Madrid earthquake altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce. Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.
The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.
Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquake.
While the 1811-12, magnitude 8 New Madrid earthquake altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce. Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.
The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.
Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquake.