Seismic Tomography |
In "Journey to the Centre of the Earth," Jules Verne took readers on an amazing expedition into the heart of the planet. University of Michigan geologist Peter van Keken takes students and fellow scientists on equally marvelous tours---skittering around subduction zones and zooming in on earthquake activity. But instead of using picks, axes and ropes as Verne's characters did, van Keken employs virtual reality to explore Earth's inner reaches.
In an invited presentation to the American Geophysical Union meeting here Dec. 16, van Keken described how the use of virtual reality in the geological sciences can foster collaboration, enhance education and advance research into such complex processes as mixing behavior in Earth's mantle.
Van Keken and colleagues at U-M, the University of Minnesota and the University of Colorado at Boulder, use virtual reality tools to "get inside and walk around" three-dimensional representations of data, discovering new patterns and relationships. The researchers can literally immerse themselves in their data using facilities such as the U-M Media Union's CAVE, a 10 x 10 x 10-foot room in which full-color, computer generated stereoscopic images are projected onto the walls and floor. Users wear special goggles that make the data appear as three-dimensional features around the viewer. They can also use a joystick and a wand to move images around and point out interesting features.
In an invited presentation to the American Geophysical Union meeting here Dec. 16, van Keken described how the use of virtual reality in the geological sciences can foster collaboration, enhance education and advance research into such complex processes as mixing behavior in Earth's mantle.
Van Keken and colleagues at U-M, the University of Minnesota and the University of Colorado at Boulder, use virtual reality tools to "get inside and walk around" three-dimensional representations of data, discovering new patterns and relationships. The researchers can literally immerse themselves in their data using facilities such as the U-M Media Union's CAVE, a 10 x 10 x 10-foot room in which full-color, computer generated stereoscopic images are projected onto the walls and floor. Users wear special goggles that make the data appear as three-dimensional features around the viewer. They can also use a joystick and a wand to move images around and point out interesting features.